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The 'transition' state in binary, f.c.c, based systems is assumed to be characterized by the repetition of 
interpenetrating polyhedral clusters of atoms occupying lattice sites and having the macroscopic com- 
position. Its mathematical formulation leads to relations between the short-range order (SRO) coef- 
ficients, which in turn impose conditions on the distribution in reciprocal space of the diffuse intensity 
as observed in electron diffraction patterns. It follows that for a given cluster type the diffuse intensity 
can only differ from zero along certain surfaces or curves. The effect of deviations from the ideal com- 
position of the clusters is briefly discussed. The theory allows an explanation of available diffraction 
data on certain binary alloys in the initial stages of ordering i.e. in the 'transition' state between the 
SRO state and the long-range order (LRO) state. 

Introduction 

Following the original suggestion of Brunel, de Berge- 
vin & Gontrand (1972), Sauvage & Parth6 (1974) have 
developed a method to interpret the diffuse intensity 
distribution in electron diffraction patterns due to SRO 
in disordered ternary derivative structures. 

The basic principle of the method consists of a 
generalization of one of Paul ing 's  rules governing the 
structure of ternary and quaternary ionic ordered 
systems (Pauling, 1960). 

The crystal structure is considered to be built by the 
regular arrangement of identical polyhedra of ions, 
within which ionic disorder may exist. However, ac- 
cording to Pauling's electrostatic valence rule it is 
required that within each of the polyhedra the com- 
position should be the same as the overall composition 
of the crystal. Expressing this requirement for each 
type of polyhedron leads 
SRO parameters, which in 
loci of points in reciprocal 

to a relation between the 
turn yields the geometrical 
space for which the diffuse 

intensity is non-vanishing. Although it is quite clear 
that Pauling's rule can only be applied as such to ionic 
crystals, we shall propose a somewhat similar guiding 
principle for binary alloys derived from considerations 
concerning the structure of LRO alloys based on the 
f.c.c, structure. 

Quite generally the structure of any crystal can, by 
definition, be generated by the translation of the unit 
cell and its contents which, in a perfectly ordered stoi- 
chiometric alloy, has necessarily the macroscopic 
composition. However, in all f.c.c, based alloys which 
we have considered so far, one can also find smaller 
units,usually a simple polyhedron such as a tetrahedron 
having the macroscopic composition, and the LRO 
structure can be built by repetition of these units 
without necessarily maintaining the same orientation. 
All of the different allowed orientations of the unit in 

* Also at S.C.K.-C.E.N., Mol (Belgium). 

one domain of the LRO alloy can in fact be obtained 
by applying the symmetry operations of the point 
group to one such unit. All orientations which are 
possible in the 'transition' state of the alloy can be 
obtained by applying moreover all operations of the 
variant generating group to the previously obtained 
orientations. We assume that these units are also of 
fundamental significance to the 'transition' state, 
which in this context becomes a "prefiguration' of the 
LRO state, in the sense that only local rearrangements 
are required to form microdomains of long-range order. 

Even when imposing the macroscopic compcsition 
on the smallest clusters (polyhedra) compatible with 
the structure a certain amount cf freedom or possible 
disorder is still left. We shall illustrate this point by 
means of an example. 

Let us first consider the CuAu structure. We accept 
as a fundamental unit the tetrahedron, which can have 
the ideal composition Cu2Au 2. Let us start with the 
tetrahedron 3, 4, 8, 7 of Fig. 1. One can obviously build 
the complete structure by repetition of such tetrahedra, 
which can of course be differently oriented e.g. as in 
8, 7, 12, 13 which is the mirror image of 3, 4, 8, 7 where- 
as 5, 3, 9, 8 differs from 3, 4, 8, 7 by a 90 ° rotation. 

The composition requirement for one cluster type is 
clearly not sufficient to determine unambiguously the 
LRO structure. This is illustrated in Fig. 2, which 
shows that after having built the tetrahedron 3, 4, 8, 7 
one can continue with the tetrahedron 5, 3, 9, 8 either 
in the way shown in Fig. 2(a) or in the way shown in 
Fig. 2(b). The latter constitutes the first step of intro- 
ducing an antiphase boundary. For each new step we 
have a similar choice. Quite analogous considerations 
apply to the other types of superstructures of the f.c.c. 
structure. This is the type of randomness which we 
assume in our model to be characteristic of the 'transi- 
tion' state in a stoichiometric alloy slightly above the 
critical temperature for ordering, and at the early 
ordering stages in quenched alloys. In reality the com- 
position requirement presumably will not be obeyed 
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strictly. We shall consider in what way this affects our 
conclusions. Deviations from the composition require- 
ment will necessarily occur in a non-stoichiometric 
alloy, and they will also occur in stoichiometric alloys, 
with greater frequency at increasing temperatures 
above the critical temperature for LRO. In a totally 
disordered alloy the distribution of clusters of a given 
polyhedra type is a binomial one. 

Justification for the validity of our assumption for 
certain alloys can be deduced from the computer 
simulations of Gehlen & Cohen (1965) for the SRO 
state, from calculations based on the probability 
variation method of Clapp (1971) and from the results 
of Gragg, Bardhan & Cohen (1971). Clapp computed 
the frequency distribution for clusters with dimensions 
of f.c.c, and b.c.c, unit cells at temperatures slightly 
above the critical temperature (Clapp, 1971). In Table 
1 we present the frequency distribution in the Cu3Au 
structure for a simpler cluster type, i.e. for a tetrahedron 
of nearest neighbours in the f.c.c, lattice. The calcula- 
tions were performed on the basis of a modified form 
of Clapp's probability variation method. As input data 
the SRO parameters obtained by Moss for tem- 
peratures 405 and 450°C were used (Moss, 1964). 

Table l. Frequency distribution o f  tetrahedral clusters 
in Cu3Au 

Relative frequency 

T= 450°C ~-~=1.10 T= 405°C ~ = 1 . 0 3  

Composition at = - 0.195 ~ = - 0.218 
Aua 0"000 0"0000 
Au3Cu 0"003 0"0013 
Au2Cu2 0" 148 0" 1257 
AuCu3 0"696 0"7446 
Cua 0"153 0"1284 
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Fig. 1. Representation of tetrahedral clusters in the Ll0 struc- 
ture all having the macroscopic composition 2:2. 
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Fig. 2. Illustration of two different positions for a pair of 
tetrahedral clusters with the same composition but leading 
to different structures. 

One can deduce from the results that even at the 
highest temperatures considered the majority of tetra- 
hedra have the macroscopic composition. At a tem- 
perature closer to the critical temperature the frequency 
of tetrahedral clusters with the macroscopic composi- 
tion becomes even more dominant. 

On the basis of these considerations we feel that it is 
justified to attribute the overall aspect of the transition- 
state diffuse scattering to the predominant clusters of a 
specific type which in a stoichiometric alloy are those 
with the macroscopic composition. The interest of this 
approach lies in the fact that although the model is 
only approximate it is sufficiently simple to yield 
analytical expressions for the loci of the diffuse scat- 
tering in reciprocal space. Hence it becomes possible 
to interpret these patterns directly in terms of the pre- 
dominant clusters of atoms. 

Also it is possible, as we shall see, to take into ac- 
count to some extent the effect of the occurrence of a 
minority of clusters which do not have the macro- 
scopic composition. 

1. The model 

We shall consider the structure of an ordering system, 
which we will assume to be based on a f.c.c, lattice, to 
be built of polyhedra, all of the same type. In the f.c.c. 
structure it is an obvious choice to consider the struc- 
ture as consisting of tetrahedra or octahedra. Further- 
more we shall assume that each of these tetrahedra or 
octahedra will, as far as possible, have the same com- 
position as the bulk. 

For an alloy with composition AB both polyhedra 
are a priori equally acceptable since both can have the 
equiatomic composition. For more complicated com- 
positions it will be necessary to assume that tetrahedra 
or octahedra with two different compositions may 
occur in a proportion which is consistent with the bulk 
composition. In structures with a lower symmetry, 
clusters of the appropriate form compatible with the 
symmetry of the structure and with the composition 
of the alloy must be assumed. We shall see examples of 
this in the alloys N i -Mo  and Au-V. 

The form of the clusters has to be such that regular 
repetition may finally lead to the LRO structure. This 
model therefore implicitly assumes that the transition 
from SRO to LRO proceeds through the formation 
of microdomains and their subsequent growth. In this 
paper only the diffuse scattering associated with the 
initial stages of ordering, i.e. the transition state is con- 
sidered. 

2. Relations between SRO parameters 

We shall show that the assumptions made in the 
previous paragraph lead to relations between the 
Warren-Cowley SRO parameters. We shall make use 
of a notation introduced by Flinn (1956). The occupa- 
tion of the site at rj is described by cry, which will be 1 
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when the site is occupied by an A atom and 0 when 
occupied by a B atom. In the latter case ay = 1. The 
average values of the occupation operators o-~' and a~ 
are the atom fractions mA and mB respectively. Devia- 
tions from the average values mA and m~ are described 
by the Flinn operator ~:: 

?rj=mA--a~=ay--mB (mA> m~). (1) 

The pair probability AB PR~J = p~B for an atom A to be 
on the site i and an atom B to be on the site j, such that 
the vector R~:=r~- r :  connecting the two atoms is 
constant, is then given by: 

The definition of the Warren-Cowley SRO parameters 
cqj is based on the conditional probability P~)~ of 
finding a B atom on the site j assuming the site i to be 
already occupied by an A atom (Cowley, 1950; Warren, 
1969); one has: 

--(PuJmB) = 1--(P~/mA). (2) CZ/.j = 1 AB 

The cqj are related to the average of the product of 
Flinn operators by the relation (see Clapp & Moss, 
1966): 

O~ij= ( ~  j)/mAm a . (3) 

We shall now derive the relation between the ei: that 
follows from our geometrical model. Let the basic 
polyhedron or cluster consists of So lattice points (So 
=4  for a tetrahedron, So = 6 for an octahedron, etc.). 
The numbers of A and B atoms in a cluster will be 
respectively SomA and Soma; these are necessarily 
integers. This condition will limit the choice of the 
basic unit for a given composition, and for a given type 
of cluster it will limit the composition. Within such a 
cluster there are S~ first neighbours, $2 second neigh- 
bours, etc. Numbering the points of the cluster by 
1 , . . . ,  So, one has of course: 

So 

Y. oJ'=mASo 
J = l  

and since a~ = mA-- ~ ,  one has: 
So 

6 j = 0 .  (4) 
j = l  

In order to introduce the SRO parameters we square 
equation (4) and take the average over the crystal: 

SO SO 

j = l  i < J  
l , j = l  

o r :  

S00c0 + 2Slcq + 2S2~2 + . .  • = 0 (5) 

where for simplicity we have introduced: ~0=cq~= 1, 
~1 corresponds to the nearest neighbours, ~2 to the 
second-nearest neighbours, etc. For the f.c.c, structure 
this means explicitly: 

0q----~ooo; ~-~0; 0~2=~000; 100; 0~3=0C000; 1~.¢; ' ' '  

Equation (5) is of fundamental importance in this 
context. In the particular case of a tetrahedral cluster 
of nearest neighbours it becomes: 

1 + 3ax = 0 (6) 

and for the octahedral arrangement: 

1 + 4~1 + ~2 = 0 (7) 

because there are four nearest neighbours and one 
second-nearest neighbour for each atom in the cluster. 

Equation (5) was already derived from geometrical 
considerations by Sauvage & Parth6 (1974). 

3. S R O  coefficients and diffuse intensity distribution In 

The relationship between the SRO parameters and the 
diffuse intensity distribution Io(g) is given by (see for 
instance Clapp & Moss, 1966): 

= C I lo(g) exp [27~i(ri-rj). g]dg (8) O~l j 
J v *  

where V* represents the volume of the unit cell in 
reciprocal space. C is a constant for a given alloy; it 
can be determined from the normalization condition: 

C ~'l /D(g)dg= 1. (9) 
v 

These equations allow a derivation of the SRO 
parameters from the measured diffuse intensity distri- 
bution, but we shall use them conversely in order to 
determine qualitatively the geometry of lo(g) for a 
given model of a transition state system, which can 
then be compared with the observed distribution. 
Replacing in (5) the u~j. by their full expressions leads 
to an equation of the type: 

I/.o(g)F(g)dg = 0 (10) 

where: 
SO SO 

F(g)= ~ ~ exp [21rig. ( r , - r j ) ]  
i=1  j = l  

So So 

= ~ exp [2~rig. r~] ~ exp [ - 2 n i g .  rj]. 
i=1  j = l  ' 

The indices i and . /are  in fact dummy indices which 
have to be extended over the same integers. Putting: 

one can write" 

SO 

f(g) = ~ exp [2z~ig. rj] (11) 
. /= l  

F(g) =f (g) f*(g)=  If(g)] 2 . 

Since F(g)= If(g)[ 2 is positive except perhaps for sur- 
faces or lines in reciprocal space along which f ( g ) = 0  
and since in any case ID(g) >- 0 the integral (10) can only 
vanish if there are no non-zero contributions. This 
means that ID(g) can only differ from zero along the 
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surfaces or lines along which F(g) vanishes. The shape . 
of  the diffuse intensity distr ibution can then qualitative- 
ly be deduced from the geometrical locus: 

f ( g ) = 0 .  (12) 

One can show that  also the converse is true: if  all dif- 
fuse intensity due to the transit ion state is concentrated 
along the locus F (g )=  0 then all clusters corresponding 
to the part icular  form of F(g) have the bulk composi- 
tion. 

If  the cluster has a centre of  symmetry which is not 
occupied by a cluster atom, one has: 

rj = R0 + ~./(j= 1 , . . . ,  ½S0; So even) 

where R0 is the position vector of  the centre of sym- 
metry.  One then finds: 

1/2S 0 

f (g)  = 2 exp [2zcig. R0] ~ cos 2zcg. e j .  
J = l  

The equat ion of  the locus for which f ( ~ ) = 0  is there- 
fore: 

1/2S0 

cos 2~zg. e j = 0 .  (13a) 
.1=1 

I f  the centre of  symmetry  is also a cluster site this rela- 
t ion becomes:  

1/2S o 

1 + 2 ~ cos 2~zg. ~j = 0.  (13b) 
£ = 1  

If there is no centre of symmetry  one has in general: 

f (g)  = ~0(g) + i~u(g) 

and the locus for which f ( g ) =  0 is given by the curves 
along which the surfaces: 

t ; (g)=0 and v ( g ) = 0  (14) 

intersect. The explicit expressions for the equations 
of the geometrical loci of  diffuse intensity correspon- 
ding to the different cluster types considered (Fig. 3) 
are tabulated in Table 2. 

As a l imiting case one can consider the whole crystal 
as a cluster, in which case the composit ion condit ion 
is necessarily satisfied. For  a crystal with N +  1 sites 
equation (11), disregarding effects due to its finite size, 
reduces to the well known relat ion: 

N 

~ j = 0  (16) 
J = 0  

where the sum is taken over all lattice vectors. Con- 
dition (12) reduces to: 

N 

exp [2zcig. r j] = 0 
J = 0  

N 

Since ~ exp [2rcig. r j] = ~ J ( g - g k )  where gk are the 
J=O k 

diffraction vectors of  the Bragg reflexions, it is con- 
cluded that diffuse intensity due to SRO can be located 
everywhere in reciprocal space except at the Bragg 
reflexions. 

4. D e v i a t i o n s  from ideal  compos i t i on  

In reality it is to be expected that in the transit ion state 
not all clusters will have the ideal composit ion.  This 

Table 2. Allowed location for  diffuse intensity corresponding with different cluster types in the f.c.c, lattice 

Cluster point 
Cluster type positions Qj 

Octahedron at = + ½ [100] 
e2 = + ½ [01 O] 
~3 = + ½ [001 ] 

Cube QI = + ½ [111] 
02 = +½ [11Tl 
03= +½ [1Ill 
04= +½ [Tll] 

Planar 5-point Q1 = [000] 
cluster in ~2= +½ [110] 
cube plane Q3 = +½ [IT0] 

Centrosymmetrical 

Geometric locus in recip- 
rocal space g(h, k, l) Fig. 

cos nh + cos rrk + cos rd = 0 (15a) 3(a) 

cos nh cbs rck cos h i=0 (15b) 3(b) 

1 + 4 cos zch cos rck = 0 (15c) 3(c) 

Non- Tetrahedron ~1 = [000] 
centrosymmetrical of nearest 02 =½ [110] J" cos rch/2 cos rck/2 cos ~l/2 = 0 (15d) 3(d) 

neighbours Q3 = ½ [011] [ sin nh/2 sin nk/2 sin rrl/2 = 0 
Q4=½ [101] 

Pyramidal QI = [000] 
5-point Q2=½ [+ 101l 
cluster Q3 = ½ [0 + 11] 

Irregular ~t = [000] 
tetrahedron Q2 = [001] 

Q3=½ [101] 
~4=½ [011] 

sin zd=0  
cos z~h+cos ztk= --½ (15e) 3(e) 

2 cos ~1 + cos zch + cos rck = 0 
sin zch + sin zrk = 0 

(15f) 3(f) 
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can be due to the fact that the ideal composition is not 
realized in each cluster although it could be according 
to the overall composition of the alloy, or also that the 
overall composition is not compatible with the cluster 
size such that clusters with at least two different com- 
positions must occur in a given proportion. We shall 
discuss in turn the effect of each circumstance. 

(a) Non-ideal composition of  the clusters 
We shall assume that a fraction P0 of the clusters 

have the ideal composition mA and hence contain SOmA 
A atoms, whereas equal fractions pl and P2 contain 
m~,So = mASo-- 1 and m~'S0 = mASo + 1 A atoms such 
that mf~+m'~" =2mA and Po+P~ +P2 = 1 (p~ =P2). 

Equation (4) now applies to each of the three kinds 
of clusters; one has: 

So  S o 

~. ~j=--S0(mf~--mA); ~ b~=0;  
J = l  J = l  

SO 

a j ' =  - So(m'~' - mA) 
J=t 

and hence: 

mAm,(Sogo + 2S1o~'1 + 2Sze'z + . . .  ) =  S~(m~-mA) 2 
mAmB(S#g + 2S1c~7 + 2Sze~ + . . . )  = 0 
mAmB(SoO(o' + 2S1~'1' + 2S2~'z' +.. .)=S~(m'A'--mA) 2. 

Noting that ej =P0e.~ + P ~ j  +p2c~j' one obtains by com- 
bining the three last equations" 

mAmB(SoC~o + 2SI~1 + 2S~2 + . . .  ) 
= S~[pi(mf~- mA) z +p2(m'~' -- mA) z] 

or since pl =p2 = ½(1 --P0) 

Soc~o + 2Szcq + 2S2~2 + . . .  = (1 --Po)/mAm~. (17a) 

The right-hand side which is zero in the ideal case, 
becomes larger as more clusters have a non-ideal com- 
position. 

(b) Composition non-compatible with cluster size 
Let us now assume that the cluster size is non-com- 

patible with the overall composition as is, for example, 

A 
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Fig. 3. Different cluster types (left) with their corresponding diffuse intensity distributions (right): (a) octahedron, (b) cube, 
(c) planar five-point cluster (only the intersection of the cylindrical surface with the [001] section is shown), (d) tetrahedron 
of nearest neighbours, (e) pyramidal five-point cluster, (f) irregular tetrahedron (only the intersection points with the cube 
planes are shown). 
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the case with octahedra in an A3B alloy. In general it is 
sufficient to accept the occurrence of two kinds of 
clusters in the right fractions p' and p"  to achieve the 
macroscopic composition. One contains an integral 
number of A atoms SomA> Soma and the other an 
integral number of A atoms Soma < Soma such that 
mASo+l=mA'So or m'A'--mA=(1/So). One has again 
for the two types of clusters separately: 

So So 

a,=--So(mA--mA); ~ a,=--  So(m'A'--mA) 
J = l  j = l  

and hence: 

mamB[So~o + 2S,~i + 2&c~'2' +. . . ]=S2o(ma-mf~) z 
mgmB[SoTo' + 2S,~;" + 2S2~' + . . .  1= S~(mA -- m~') 2 . 

Since c~j =p'~j  +p"~j '  with p'  + p "  = 1 and p'm[~ +p"m 
=ma  one obtains by combining these equations: 

Socxo + 2Sx~1 + 2S2~2 + . . .  
=[S~/(mAmB)] [p'(mA--m~,) 2 +p"(m'A'--mA) 2] 

and since: 

p'=(mA'--mA)/(mA'--mA) and 
p"=(mA--mA)/(mA'--mA) 

the right-hand side of the equation can be simplified 
and the relation reduces to: 

S0~0 + 2S1~1 + 2S2~a + . . .  = (p'p")/(mAmB). (17b) 

5. Effects of non-ideal duster composition 
on the diffuse intensity distribution 

Deviations from the ideal cluster composition cause 
the right-hand side of the equation (10) in both cases to 
differ from zero, i.e. the equation now becomes: 

C I/ ,-(g)F(g)dg= ~ 

with either fi = (1 --po)/mAmB or fi=p'p"/mAmB. In view 
of equation (9) one can always rewrite this as: 

C 1 lo(g)[F(g)-~dg=O. 
F* 

Whereas F(g) is always non-negative, this is no longer 
the case for F ( g ) - 8  since 8 >_ 0. If fi is small compared 
to the average value of F(g), the expression F(g) will 
only be negative in a narrow region around F(g)=0.  
One can then still expect for continuity reasons that 
I(g) will now be non-vanishing only in the vicinity of 
the surface F ( g ) - 8 = 0 .  The effect of deviations from 
the ideal transition state described in our model 
is therefore to cause a deformation and/or a broadening 
of the distribution around the ideal one. It will be shown 
in a forthcoming paper that, if special ordering con .~ 
ditions are satisfied, the intensity is concentrated on 
the surface F ( g ) - 8 = 0 ,  even when the value of 8 is 
large. 

6. Application to alloy systems 

It is quite natural to assume that the transition from the 
SRO state to the LRO state will occur gradually and 
that in a 'transition phase' clusters will be formed, 
which are a 'prefiguration' of the LRO state in that 
they are built from the same sub-unit-cell motifs and 
have predominantly the same composition as in the 
LRO state towards which they evolve. In §3 we have 
calculated analytical expressions for the loci of the 
diffuse intensity for different clusters of this type. It is 
to be expected that gradually more complicated clusters 
will become predominant and that finally, micro- 
domains of LRO will form in a SRO matrix. This 
should be reflected in the evolution of the pattern of 
diffuse scattering due to these clusters. We shall now 
describe the evolution of this transition state for dif- 
ferent alloys and propose interpretations for the ob- 
served patterns in terms of clusters and microdomains. 
(One should be careful when determining diffuse scat- 
tering configurations; several sections through recip- 
rocal space are required to locate the spatial configura- 
tion with any precision.) 

6.1 The Ni-Mo system 
The Ni-rich end of the Ni-Mo system is of particular 

interest because the maxima in diffuse intensity due to 
SRO do not coincide with the positions of the LRO 
spots of the Ni4Mo structure. Dark-field images in the 
SRO spots were first shown by Ruedl, Delavignette & 
Amelinckx (1968) to be spotty and attributed to the 
occurrence of microdomains of the different orienta- 
tion variants. Later this was confirmed and discussed 
by a number of authors (Moss & Clapp, 1968; Oka- 
moto & Thomas, 1971; Das & Thomas, 1974; Cha- 
kravarti, Starke, Sparks & Williams, 1974). 

We have studied alloys of the two different composi- 
tions Ni3Mo and Ni4Mo. We first describe the evolu- 
tion of the diffuse scattering patterns on isothermal 
annealing after quenching from above the ordering 
temperature. The alloys are water quenched as foils, 
annealed under vacuum at 800 °C or 840 °C for varying 
periods of time and subsequently thinned electro- 
lyrically before examination in the electron microscope. 
The results are somewhat different for the two com- 
positions and for the two annealing temperatures. We 
therefore describe the phenomena in the two alloys 
separately and subsequently we propose an interpreta- 
tion within the framework of our model. 

(a) The Ni4Mo composition 
When quenched in direct contact with water, the 

foils exhibit a [001] pattern as shown in Fig. 5(a) i.e. 
with maxima at the (1½0) positions only. Dark-field 
images in such spots do not reveal microdomains. 
When the alloy is water quenched in a quartz capsule, 
one obtains the pattern of Fig. 4(a) which is represented 
schematically in Fig. 5(b). Dark-field images in a 
(1½0) spot now reveal microdomains. The pattern of 
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the type shown in Fig. 5(a) is therefore to be considered 
as a representation of the true SRO state, whereas the 
pattern of Fig. 5(b) is characteristic of a specimen 
containing a fine-scale microdomain structure. 

The [001] pattern shown in Fig. 4(a) and schematical- 
ly in Fig. 5(b) contains, apart from the SRO spots of 
type 1, pseudo-circles 2 and segments 3. These features 
are both situated in the cube planes as can be deduced 
from the oblique [112] sections of Fig. 4(a) which show 
diffuse streaks along the intersection of the planes h, k 
or /= in teger .  The [01T] section of Fig. 6 is also con- 
sistent with this interpretation. It should be noted that 
in the [001] section the pseudo-circle does not pass 
through the spots 1, but lies slightly outside the square 
formed by spots of type 1. Since all the intensity is 
found to be in planes such as l=  0, + 1 . . .  the pseudo- 
circles are curves in reciprocal space; they are not due 
to the intersection of a surface in reciprocal space with 
Ewald's sphere. 

On further annealing, either at 800°C or at 840°C 
the [001] and [112] patterns evolve as shown in Fig. 4(b) 
and schematically in Fig. 5(c) for the [001] pattern. The 
weak straight segments disappear first; afterwards the 
pseudo-circles increase slightly in size and then they 
break up into segments [Fig. 4(c)] connected to the type 
1 spots. Finally the intensity becomes concentrated in 
the type 5 spots, with only weak type 1 spots subsisting 
[Fig. 4(d)]. After 5 min at 800 °C the pattern becomes 
that of Fig. 4(e). This pattern is characteristic of the 
domain structure consisting of all variants of the LRO 
NiaMo structure. The very weak spots 6 are due to 
double diffraction at overlapping antiparallel twins; 
this has been described by Ruedl et al., (1968). The 
SRO spots 1 have now completely disappeared. 

(b) NiaMo composition 
After quenching from above the ordering temper- 

ature the same SRO spots as in Ni4Mo are present 
[Fig. 7(a)]. On annealing for about 5 min at 800 °C the 
pattern of Fig. 7(c), which is schematically shown in 
Fig. 8(c), results. On annealing for the same period of 
time at 840°C, one obtains the pattern shown in Fig. 
7(b) and represented schematically in Fig. 8(b). 

Dark-field images taken in spots of the type 8 
exhibit the 'precipitates' or 'domains' of Fig. 9(a), 
whereas dark-field images in spots of the type 5 reveal 
the 'microdomains' or 'precipitates' shown in Fig. 9(b). 
In the first case, the precipitates have the Ni2Mo struc- 
ture whereas in the second case the structure of the 
particles is that of Ni4Mo. Of course only a fraction of 
the variants show up in each spot. The spots of type 8 
are elongated along a direction which is tangential to 
the pseudo-circles of diffuse intensity. 

(c) Interpretation of the diffuse intensity patterns 
According to the conclusions of §3, a diffuse inten- 

sity distribution along segments defined by the rela- 
tions l=0 ;  h,k= + 1 (and similar ones derived from 
this one by symmetry) points to the presence of tetra- 

hedral clusters (Table 2). The segments should be best 
defined in patterns from the alloy with a composition 
which is compatible with the composition of the 
clusters, i.e. in the NiaMo alloy. In this alloy the cluster 
containing three Ni atoms and one Mo atom has the 
macroscopic composition. The diffuse segments are 
indeed found to be better defined in NiaMo than in 
Ni4Mo. In all cases the segments are very weak, how- 
ever, and the tetrahedron does not seem to be a pro- 
minent feature except under special conditions leading 
to the formation of the D022 structure, which has the 
composition 1-3 and which can be considered to be 
built from such regular tetrahedra as well as from ir- 
regular tetrahedra of the type considered in Table 2 
(see Van Tendeloo, De Ridder & Amelinckx, 1975). 
The superlattice spots form along the diffuse segments 
at the intersection points of the two loci corresponding 
to regular and irregular tetrahedra. 

The occurrence of the pseudo-circles 7 through the 
spots of the type 1 in Nia Mo can be attributed to the 
occurrence of regions of octahedral clusters. These 
regions cannot have the macroscopic composition; 
but they may for example have the compositions 
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Fig. 5. Schematic representation of the [001] diffraction pattern 

for NiaMo after different annealing times: (a) As-quenched 
in direct contact with water; only the SRO spots are present. 
(b) When specimens are quenched in quartz capsules sup- 
plementary diffuse intensity is observed [Fig. 4(a)]. (c), (d), 
(e) Schematic representation of the patterns of Figs. 4(c) (d), 
and (f) respectively. 
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Fig. 8. Schematic representation of the [001] sections shown 
in Fig. 7. 
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Fig. 6. [01]-] section of tile Ni+Mo diffraction pattern of an 
alloy quenched into water whilst being encapsulated in 
quartz. Note the horizontal diffuse streaks in the (022) 
direction. 
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Fig. 4. [001] section (left) and [112] section (right) of the dif- 
fraction pattern for Ni+Mo after different annealing times 
at 800°C. (a) when quenched in a quartz capsule. (b), (c), 
(d), (e) after annealing 10, 30, 60 and 300 s respectively at 
800°C. 

(c) 

Fig. 7. [001] section (left) and [112] section (right) for Ni3Mo 
(a) as quenched, (b) after annealing for 5 minutes at 840°C, 
(c) after annealing for 5 minutes at 800°C. 
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Fig. 9. Dark-field micrographs in a NizMo spot and a Ni4Mo 
spot corresponding to the diffraction patterns of Figs. 7(b) 
and 7(c) respectively. Note the difference in morphology 
between the two domain structures. 

(b) 

(c) 

Fig. 12. (a) and (b) [001] section, (c) Ill2] section of the dif- 
fraction pattern for Au,V at different stages between the 
as-quenched state and the completely ordered state. 
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Ni4Mo2 or NisMo. Since the diffuse intensity is con- 
centrated in planes of the type [001] one-dimensional 
LRO along a cube direction is present, i.e. in these 
regions chains of Ni and Mo atoms are formed along 
one of the cube directions. As a result, diffuse intensity 
due to the transition state is located on pseudo-circles 
like: 

c o s n h + c o s n k + l = 0  
1=0.  

Note that this curve passes through the four points 1. 
In the Ni3Mo alloy the appearance of the small 

streaks 8 [Fig. 7(b)] along the [110] direction can be 
interpreted as being due to the formation of a linear 
three-point cluster along one of the [110] directions. 
Such clusters are suggested by their occurrence in the 
Ni2Mo structure, which can be built by means of 
linear three-point clusters with the macroscopic 
Ni2Mo composition. Such clusters lead to diffuse 

M°~N i 
Fig. 10. Pyramidal cluster formation leading to LRO in the 

c direction. If the composition rule is not violated an in- 
finite chain of octahedra results once the first pyramidal 
five-point cluster is formed. 
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Fig. 11. Schematic representation of the [001] diffraction pat- 
tern for Au4V (a) after quenching, (b) after annealing for 
5 min. 

intensity along planes of the type: 
h + k =  z 4 (3,~) + 2n(n = integer) 

which are tangents to the pseudo-circles. As a result 
the type 8 spots are streaked in the [110] directions in 
accord with observations of Yamamoto, Nenno, 
Sabury & Tizutani (1970). Previously this streaking 
was explained by Okamoto & Thomas (1971) as being 
the 'average' of two [210] type directions, perpendicular 
to the planes of non-conservative antiphase boundaries. 
The pseudo-circles 2 observed in Ni4Mo patterns can 
be attributed to five-point clusters of the pyramidal 
type, describe in {}3 and in the ideal case giving rise to 
diffuse intensity along the curves: 

c o s n h + c o s n k = - ½  
l=0,  + 1 . . .  

These clusters are suggested because they are present 
in the Ni4Mo structure. If the macroscopic composi- 
tion for such clusters is strictly imposed, one-dimen- 
sional LRO of the type occurring along the c direction 
in LRO Ni4Mo, is automatically implied. This can be 
seen immediately on reference to Fig. 10. If the summit 
of the first Ni4Mo pyramid 1 is occupied by Mo the 
base of the inverted pyramid 2 on top of this one is to 
be occupied exclusively by Ni, and as a result the top 
of the pyramid built on this base has again to be Mo. 
Automatically an infinite row of slightly tetragonal 
octahedra of the type occurring along the c axis in 
NiaMo results. One therefore expects sequences of such 
pyramidal clusters, only interrupted by a cluster which 
has not the required composition. It is noteworthy 
that the computer simulation by Chakravarti et al, 
(1974) of SRO in Ni4Mo also leads to similar rod-like 
microdomains along a cube direction. In order to 
generate the LRO state, ordering has to spread laterally, 
i.e. in planes perpendicular to the rows just considered. 
This will be initiated by the formation of a planar five- 
point cluster of the type described in Table 2. The occur- 
rence of such clusters is therefore a natural assumption 
and has necessarily to arise somewhat later in the 
initial stage of ordering. The diffuse intensity associated 
with such clusters is concentrated along cylindrical 
surfaces represented in Fig. 3(c). The intersection of 
the pseudo-circle 2 with the cylindrical surface of type 
9 indicated by the dotted line in Fig. 5(c), leads 
naturally to the formation of the wings 4 [Fig. 4(c)] and 
finally to the formation of the spots 5. This is con- 
sistent since the simultaneous presence of the pyra- 
midal and planar five point clusters leads to domains 
of LRO structure. The five types of cluster considered 
as yet: (i) the tetrahedral cluster, (ii) the octahedral 
cluster, .(iii) the linear [110] three-point cluster with 
composition Ni2Mo, (iv) the pyramidal five-point 
cluster with composition Ni4Mo, (v)the planar five- 
point cluster with composition Ni4Mo apparently occur 
simultaneously in NiaMo, whereas only (iv) and (v) 
occur predominantly in Ni4Mo. We shall now describe 
the chronological appearance of these different clusters. 
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For NiaMo the linear clusters of type Ni2Mo give 
rise to short segments of type 8, which are in fact due 
to the superposition of the lines associated with the 
linear three-point cluster and indicated by means of 
dotted lines in Fig. 5(c), and of the pseudo-circles 7 
due to the octahedra. These segments 8 evolve into the 
spots due to the Ni2Mo precipitates whereas the spots 
due to the different Ni4Mo variants become visible as 
well in Fig. 7(c). As long as the SRO matrix subsists 
the four spots of type 1 remain as well. 

In the NigMo alloy the evolution is simpler in that 
only one ordered phase is formed. The first clusters 
that form out of the SRO state are apparently the five- 
point pyramidal clusters that produce the pseudo- 
circle 2 (Figs. 4 and 5) and the tetrahedra that give rise 
to the segments 3. The latter clusters are apparently 
not stable because the segments 3 that reveal them 
rapidly disappear and the pseudo-circle breaks up into 
the short segments 4, which can be interpreted as being 
due to the intersection of the locus due to the pyramidal 
five-point cluster and that due to the planar five-point 
cluster (Fig. 3). Note that the spots due to the LRO 
Ni4Mo structure are situated at the intersection points 
of the loci (15e) and (15c). 

After longer annealing the microdomains grow and 
the spots 5 become sharper whereas the spots 1 finally 
disappear completely, corresponding to the elimination 
of the SRO matrix. 

When making dark-field images in the segments of 
the pseudocircles 2 one observes a spotty pattern, sug- 
gesting that microdomains are characteristic of the 
'transition' state, rather than of the true SRO state. 
The reason why microdomains have been observed 
initially in spots 1 by a number of authors, is presum- 
ably to be attributed to the fact that one inevitably also 
collects the most intense parts of the pseudo-circle 2 
in the aperture when making dark-field images in type 
1 spots. 

6.2 The A u - V  system 

Although the gold-vanadium system at its Au-rich 
end gives rise to the same superstructure as Ni4Mo, the 
behaviour of the 'transition' state is different from that 
in the Ni-Mo system. 

In the as-quenched state, both AuaV and Au4V show 
the configuration of diffuse scattering represented 
schematically in Fig. l l and reproduced in Fig. 12. 
The SRO spots are much more diffuse than in Ni4Mo. 
The pseudo-circles 9 [Fig. ll(a)] do not pass through 
the SRO spots; but they do pass through the positions 
5 which will be occupied in the LRO state by the eight 
superlattice spots. From the [112] section of reciprocal 
space [Fig. 12(c)] it can now be concluded that diffuse 
intensity is not located in planes as in the case of 
Ni4Mo but along cylindrical surfaces parallel to the 
cube directions and which intersect the (001) plane 
along the pseudo-circles of Fig. 1 l(a). Such cylinders 
are of course present along all cube directions giving 
rise to loci in space which are the intersecting lines of 

these cylinders; along such lines, the diffuse intensity 
will be largest. 

In Au4V as well as in AuaV, which behaves quite 
similarly, it thus seems that the planar five-point 
cluster is predominant in the initial stages of ordering. 
In a further stage the five-point pyramidal cluster 
forms and the superposition of the diffuse scattering 
patterns due to the two types of five-point cluster 
leads to the pattern of Fig. l l(b). The chronological 
order in which the five-point pyramidal and planar 
clusters appear is apparently inverted in Au4V as 
compared to Ni4Mo. 

Conclusions 

The diffuse scattering phenomena that accompany the 
'transition' between the SRO state and the LRO state 
in alloys can be explained satisfactorily on the assump- 
tion that configurations of atoms are formed which 
prefigure the LRO structure. These configurations are 
predominantly clusters such as tetrahedra, octahedra, 
e tc . . ,  formed by atoms placed on f.c.c, lattice posi- 
tions, and satisfy the composition requirement. In 
general, these clusters which occur also in the LRO 
alloy constitute the predominant type and suffice to 
explain the observed diffuse scattering features. 
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